General Chemistry II-Jasperse Name: Buffers-Titrations-Acid/Base Additions-Solubility Quiz:

- 1. When placed in 1 L of water, which of the following combinations would give a buffer solution? (Remember, in some cases they might react with each other...)
 - 1) 0.5 mol HClO and 0.5 mol NaClO
 - 2) 0.5 mol HBr and 0.5 mol NaF
 - 3) 0.5 mol HBr and 1.0 mol NaF
 - 4) 0.5 mol HBr and 1.0 mol NaOH

a) 1 only

- b) 1 and 2 only
- c) 1 and 3 only
- d) 3 and 4 only
- e) all would give buffer solutions
- 2. What reaction occurs when hydrochloric acid solution is added to a solution containing equal concentrations of acetic acid and sodium acetate?
 - a. $CH_3COOH + H^+ \rightarrow CH_3COOH_2^+$ b. $CH_3COO^- + H^+ \rightarrow CH_3COOH$
- d. $2CH_3COO^- + 2H^+ \rightarrow CH_3COO + H_2$

Due:

- e. $CH_3COOH + H^+ \rightarrow CH_3CO^+ + H_2O$
- c. $CH_3COOH + HCl \rightarrow CH_3COO^- + H_2Cl^+$
- 3. Calculate the pH of a solution containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). (HF, $K_a = 7.2 \times 10^{-4}$)?

No multiple choice options here. Just write in the pH.

- 4. Calculate the pH of a solution originally containing 0.20 mol of cyanic acid HCNO following addition of 80 mL of 1.00 M NaOH. (K_a of HCNO = 3.5 x 10⁻⁴). The initial volume of the cyanic acid solution was 920 mL, so the final combined volume at the end is 1.0 L.
 - a) 3.28
 - b) 3.39
 - c) 3.46
 - d) 3.64
 - e) none of the above
- 5. Consider a solution initially containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). If 0.20 mol of HCl are added to this solution, which of the following statements is **FALSE**?
 - a) You will still have a buffer solution at the end, since you'll still have both weak base and conjugate weak acid b) The pH will have shifted to a lower pH
 - c) You'll have more moles of HF at the end than what you began with
 - d) You will no longer have a buffer solution, since all of the weak base will have reacted with the HCl.
 - e) none of the above

- 6. A solution of hydrochloric acid (HCl, 40.00 mL) was titrated to the equivalence point with 22.0 mL of 0.320 M sodium hydroxide. What was the concentration of the hydrochloric acid?
 - a. 0.07048 M
 - b. 0.178 M
 - c. 0.282 M

- d. 0.0353 M
- e. None of the above
- 7. What volume of 0.80 M NaOH will be required to titrate a 20.0 mL solution of 0.60M hydrochloric acid to the equivalence point?
 - a. 15 mL
 - b. 20 mL

d. 30 mL e. None of the above

- c. 25 mL
- 8. When the following chemicals are mixed, each in 1 liter of water, which would give a **basic pH** at the end?
 - a) 1 mole of KOH and 1 mole of HF b) 1.0 mole of KOH and 1.0 mole of HCl c) 1 mole of HCl and 1 mole of NH_3 d) 0.5 mole of KOH and 1.0 mole of HCl
- 9. If you start with 80.0 mL of 0.40 M HNO₃, calculate the pH following addition of 50.0 mL of 0.80 M KOH.
 - a) 3.4 b) 7.0 c) 12.8 d) 13.1 e) none of the above
- 10. The K_{sp} of AgBr is 5.4 x 10⁻¹³ mol/L. What is the solubility of AgBr?
 - a) 5.4 x 10⁻¹³ b) 7.3 x 10^{-7} c) 9.5 x 10^{-5} d) 3.0 x 10⁻¹⁰ e) none of the above
- 11. What is the solubility of barium sulfate in otherwise pure water? The K_{sp} value for barium sulfate is 1.1×10^{-10} .
 - a. $7.4 \times 10^{-6} M$ d. $2.2 \times 10^{-9} M$ b. $5.5 \times 10^{-11} M$ e. $1.1 \times 10^{-10} M$ c. $1.0 \times 10^{-5} M$
- 12. As the **<u>pH decreases</u>**, the solubility of ______ would <u>increase</u>. a. lead(II) chloride d. mercury(I) bromide

 - b. silver(I) iodide c. calcium carbonate

- e. silver(I) chloride